Collocations in Sign Language Lexicography: Towards Semantic Abstractions for Word Sense Discrimination

Publication
In Proceedings of the 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives (SignLang@LREC 2020)

Abstract

In general monolingual lexicography a corpus-based approach to word sense discrimination (WSD) is the current standard. Automatically generated lexical profiles such as Word Sketches provide an overview on typical uses in the form of collocate lists grouped by their part of speech categories and their syntactic dependency relations to the base item. Collocates are sorted by their typicality according to frequency-based rankings. With the advancement of sign language (SL) corpora, SL lexicography can finally be based on actual language use as reflected in corpus data. In order to use such data effectively and gain new insights on sign usage, automatically generated collocation profiles need to be developed under the special conditions and circumstances of the SL data available. One of these conditions is that many of the prerequesites for the automatic syntactic parsing of corpora are not yet available for SL. In this article we describe a collocation summary generated from DGS Corpus data which is used for WSD as well as in entry-writing. The summary works based on the glosses used for lemmatisation. In addition, we explore how other resources can be utilised to add an additional layer of semantic grouping to the collocation analysis. For this experimental approach we use glosses, concepts, and wordnet supersenses.

Related