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If a word does
not fit in the context,

then it is probably
not meant literally.

See also Sporleder & Li (2009)/Li & Sporleder(2010)
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Is word common 
in all domains?

Is word typical 
for this domain?

literal

metaphorliteral

yes

yes no

no
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1 Billion Web Documents

500 Million English Web Documents

Segment en0000
3 Million Documents

1.8 Million Documents without Spam
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MICS Governance Corpus
2510 Sentences

“And yet we stand together as we did two centuries ago.” 
“Many Jewish voters will find themselves at a crossroads.”

Examples

23 % 60 %

17 %
0 metaphors
1 metaphor
2+ metaphors
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document frequency > δ 

domain relevance > 𝜸literal

metaphorliteral

yes

yes no

no

8 Subdomains

4-14 manual seeds

8 ⨉ 10.000 Docs each
𝜸=0.02 ; δ=0.1

Seed Set 1: Manual
1 Domain

50 best gold metaphors

80.000 Docs
𝜸=0.01 ; δ=0.1

Seed Set 2: Gold 
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Bigram model  
10-fold cross validation

Setup

Part of Speech  
Lexicographer Sense  

Features
Relevance Weights (𝜸=0.02 ; δ=0.79)
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Pro  
Term Relevance is a cheap Metaphor Heuristic  

Useful in Low Resource Scenarios

Con 
Performance still too low  

Future Work 
Term Relevance: Semantic Vector Space  

Domain Corpora: Topic Modelling  
Application: Other non-literal devices


